

Dissertation Release

16.10.2020

How can we simulate ship performance in level ice reliably and efficiently?

Title of the dissertation	Numerical simulation of ship performance in level ice: evaluation, framework and modelling
Contents of the dissertation	Shipping activities in polar and sub-polar regions rely on ice-strengthened ships with capability to navigate through ice-covered waters. An important index of a ship's icebreaking capacity is the thickness of level ice which the ship can break continuously. To estimate this, knowledge and methods are needed to calculate the attainable speed of a ship in level ice with various thickness. This thesis focuses on numerical methods to make such calculations.
	To achieve the goal, this thesis starts with an evaluation of the state-of-art methods for the estimation of ship performance in ice and identify the most critical aspects to be further investigated. A framework is proposed following the evaluation to investigate the methodological issues regarding the establishment of a reliable and efficient numerical model. The thesis then proposes models in local ship-ice interaction scale and assembles the models into a global scale model, which simulates ship motion in level ice either in straight course or during maneuvering.
	The results of this thesis can be used as the basis to develop future numerical models for ship performance in level ice. The resulting numerical model has good potential to be applied in practical ship design process, which enables credible estimation of ship performance at early design stage and promotes innovation on icebreaking hull forms.
Field of the dissertation	Marine technology
Doctoral candidate	Fang Li, M.Sc. (Tech) Born in Shandong, China. 22.02.1992
Time of the defence	06.11.2020 at 12:00 PM
Place of the defence	Zoom link, https://aalto.zoom.us/j/66696860489
Opponent	Professor Raed Lubbad, Norwegian University of Science and Technology, Norway
Supervisor	Professor Pentti Kujala, Aalto University School of Engineering, Department of Mechanical Engineering
Electronic dissertation	http://urn.fi/URN:ISBN:978-952-64-0069-3
School of Engineering electronic dissertations	https://aaltodoc.aalto.fi/handle/123456789/49
Doctoral candidate's contact information	Fang Li, Department of Mechanical Engineering, tel: +358 505240424, fang.li@aalto.fi